
The Intrinsic Hodge Theory of p-adic Hyperbolic Curves
by Shinichi Mochizuki

§1. Introduction

(A.) The Fuchsian Uniformization

A hyperbolic curve is an algebraic curve obtained by removing r points from a smooth,
proper curve of genus g, where g and r are nonnegative integers such that 2g−2+r > 0. If
X is a hyperbolic curve over the field of complex numbers C, then X gives rise in a natural
way to a Riemann surface X . As one knows from complex analysis, the most fundamental
fact concerning such a Riemann surface (due to Köbe) is that it may be uniformized by
the upper half-plane, i.e.,

X ∼= H/Γ

where H
def= {z ∈ C | Im(z) > 0}, and Γ ∼= π1(X ) (the topological fundamental group of X )

is a discontinuous group acting on H. Note that the action of Γ on H defines a canonical
representation

ρX : π1(X ) → PSL2(R) def= SL2(R)/{±1} = AutHolomorphic(H)

The goal of the present manuscript is to survey various work ([Mzk1-5]) devoted to gener-
alizing Köbe’s uniformization to the p-adic case.

First, we observe that it is not realistic to expect that hyperbolic curves over p-
adic fields may be literally uniformized by some sort of p-adic upper half-plane in the
fashion of the Köbe uniformization. Of course, one has the theory of Mumford ([Mumf]),
but this theory furnishes a p-adic analogue not of Köbe’s Fuchsian uniformization (i.e.,
uniformization by a Fuchsian group), but rather of what in the complex case is known
as the Schottky uniformization. Even in the complex case, the Fuchsian and Schottky
uniformizations are fundamentally different: For instance, as the moduli of the curve vary,
its Schottky periods vary holomorphically, whereas its Fuchsian periods vary only real
analytically. This fact already suggests that the Fuchsian uniformization is of a more
arithmetic nature than the Schottky uniformization, i.e., it involves

real analytic structures ⇐⇒ complex conjugation ⇐⇒ Frobenius at the infinite prime

Thus, since one cannot expect a p-adic analogue in the form of a literal global uniformiza-
tion of the curve, the first order of business is to reinterpret the Fuchsian uniformization
in more abstract terms that generalize naturally to the p-adic setting.
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(B.) The Physical Interpretation

The first and most obvious approach is to observe that the Fuchsian uniformization
gives a new physical, geometric way to reconstruct the original algebraic curve X. Namely,
one may think of the Fuchsian uniformization as defining a canonical arithmetic structure
ρX : π1(X ) → PSL2(R) on the purely topological invariant π1(X ). Alternatively (and
essentially equivalently), one may think of the Fuchsian uniformization as the datum of a
metric (given by descending to X ∼= H/Γ the Poincaré metric on H) – i.e., an arithmetic
(in the sense of arithmetic at the infinite prime) structure – on the differential manifold
underlying X (which is a purely topological invariant). Then the equivalence

X ⇐⇒ SO(2)\PSL2(R)/Γ

between the algebraic curve X and the physical/analytic object SO(2)\PSL2(R)/Γ ob-
tained from ρX is given by considering modular forms on H = SO(2)\PSL2(R), which
define a projective (hence, algebraizing) embedding of X .

(C.) The Modular Interpretation

Note that ρX may also be regarded as a representation into PGL2(C) = GL2(C)/C×,
hence as defining an action of π1(X ) on P1

C. Taking the quotient of H×P1
C by the action

of π1(X ) on both factors then gives rise to a projective bundle with connection on X .
It is immediate that this projective bundle and connection may be algebraized, so we
thus obtain a projective bundle and connection (P → X,∇P ) on X. This pair (P,∇P )
has certain properties which make it an indigenous bundle (terminology due to Gunning).
More generally, an indigenous bundle on X may be thought of as a projective structure
on X , i.e., a subsheaf of the sheaf of holomorphic functions on X such that locally any
two sections of this subsheaf are related by a linear fractional transformation. Thus, the
Fuchsian uniformization defines a special canonical indigenous bundle on X.

In fact, the notion of an indigenous bundle is entirely algebraic. Thus, one has a
natural moduli stack Sg,r → Mg,r of indigenous bundles, which forms a torsor (under
the affine group given by the sheaf of differentials on Mg,r) – called the Schwarz torsor
– over the moduli stack Mg,r of hyperbolic curves of type (g, r). Moreover, Sg,r is not
only algebraic, it is defined over Z[12 ]. Thus, the canonical indigenous bundle defines a
canonical real analytic section

s : Mg,r(C) → Sg,r(C)

of the Schwarz torsor at the infinite prime. Moreover, not only does s “contain” all
the information that one needs to define the Fuchsian uniformization of an individual
hyperbolic curve (indeed, this much is obvious from the definition of s!), it also essentially
“is” (interpreted properly) the Bers uniformization of the universal covering space (i.e.,
“Teichmüller space”) of Mg,r(C) (cf. the discussions in the Introductions of [Mzk1,4]).
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That is to say, from this point of view, one may regard the uniformization theory of
hyperbolic curves and their moduli as the study of the canonical section s. Alternatively,
from the point of view of Teichmüller theory, one may regard the uniformization theory of
hyperbolic curves and their moduli as the theory of (so-called) quasi-fuchsian deformations
of the representation ρX .

(D.) The Notion of “Intrinsic Hodge Theory”

Note that both the physical and modular approaches to the Fuchsian uniformization
assert that there is a certain equivalence

algebraic geometry ⇐⇒ topology endowed with an arithmetic structure

That is, on the algebraic geometry side, we have the scheme (respectively, stack) given
by the curve X itself in the physical approach (respectively, its moduli Mg,r in the mod-
ular approach), whereas on the “topology plus arithmetic structure” side, we have the
theory of the canonical representation ρX of π1(X ) (i.e., SO(2)\PSL2(R)/Γ in the phys-
ical approach; quasi-fuchsian deformations of ρX in the modular approach). This sort of
equivalence is reminiscent of that given by classical or p-adic Hodge theory between the
de Rham or Hodge cohomology of an algebraic variety (on the algebraic geometry side),
and the singular or étale cohomology (equipped with Galois action) on the topology plus
arithmetic side. In our case, however, instead of dealing with the cohomology of the curve,
we are dealing with “the curve itself” and its moduli. It is for this reason that we refer to
this sort of theory as the intrinsic Hodge theory of the curve X.

Finally, we note that this formal analogy with classical/p-adic Hodge theory is by no
means merely philosophical. Indeed, even in the classical theory reviewed in (B.) and (C.)
above, the methods of classical Hodge theory play an important technical role in the proofs
of the main theorems. Similarly, in the theory of [Mzk1-5] – which constitute our main
examples of intrinsic Hodge theory for hyperbolic curves – the more recently developed
techniques of p-adic Hodge theory play a crucial technical role in the proofs of the main
results.

§2. The Physical Approach in the p-adic Case

(A.) The Arithmetic Fundamental Group

Let K be a field of characteristic zero. Let us denote by K an algebraic closure of
K. Let ΓK

def= Gal(K/K). Let XK be a hyperbolic curve over K; write XK

def= X ×K K.
Then one has an exact sequence

1 → π1(XK) → π1(XK) → ΓK → 1

of algebraic fundamental groups. (Here, we omit the base-points from the notation for the
various fundamental groups.)

3



We shall refer to π1(XK) as the geometric fundamental group of XK . Note that the
structure of π1(XK) is determined entirely by (g, r) (i.e., the “type” of the hyperbolic curve
XK). In particular, π1(XK) does not depend on the moduli of XK . Of course, this results
from the fact that K is of characteristic zero; in positive characteristic, on the other hand,
preliminary evidence ([Tama2]) suggests that the fundamental group of a hyperbolic curve
over an algebraically closed field (far from being independent of the moduli of the curve!)
may in fact completely determine the moduli of the curve.

On the other hand, we shall refer to π1(XK) (equipped with its augmentation to ΓK)
as the arithmetic fundamental group of XK . Although it is made up of two “parts” – i.e.,
π1(XK) and ΓK – which do not depend on the moduli of XK , it is not unreasonable to
expect that the extension class defined by the above exact sequence, i.e., the structure of
π1(XK) as a group equipped with augmentation to ΓK , may in fact depend quite strongly
on the moduli of XK . Indeed, according to the anabelian philosophy of Grothendieck
(cf. [LS]), for “sufficiently arithmetic” K, one expects that the structure of the arithmetic
fundamental group π1(XK) should be enough to determine the moduli of XK . Although
many important versions of Grothendieck’s anabelian conjectures remain unsolved (most
notably the so-called Section Conjecture (cf., e.g., [LS], p. 289, 2)), in the remainder of
this §, we shall discuss various versions that have been resolved in the affirmative. Finally,
we note that this anabelian philosophy is a special case of the notion of “intrinsic Hodge
theory” discussed above: indeed, on the algebraic geometry side, one has “the curve itself,”
whereas on the topology plus arithmetic side, one has the arithmetic fundamental group,
i.e., the purely (étale) topological π1(XK), equipped with the structure of extension given
by the above exact sequence.

(B.) The Main Theorem

Building on earlier work of H. Nakamura and A. Tamagawa (see, especially, [Tama1]),
the author applied the p-adic Hodge theory of [Falt2] and [BK] to prove the following result
(cf. Theorem A of [Mzk5]):

Theorem 1. Let p be a prime number. Let K be a subfield of a finitely generated field
extension of Qp. Let XK be a hyperbolic curve over K. Then for any smooth variety SK

over K, the natural map

XK(SK)dom → Homopen
ΓK

(π1(SK), π1(XK))

is bijective. Here, the superscripted “dom” denotes dominant (⇐⇒ nonconstant) K-
morphisms, while Homopen

ΓK
denotes open, continuous homomorphisms compatible with the

augmentations to ΓK , and considered up to composition with an inner automorphism aris-
ing from π1(XK).

Note that this result constitutes an analogue of the “physical aspect” of the Fuchsian
uniformization, i.e., it exhibits the scheme XK (in the sense of the functor defined by
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considering (nonconstant) K-morphisms from arbitrary smooth SK to XK) as equivalent
to the “physical/analytic object”

Homopen
ΓK

(−, π1(XK))

defined by the topological π1(XK) together with some additional canonical arithmetic
structure (i.e., π1(XK)).

In fact, the proof of Theorem 1 was also motivated by this point of view: That is
to say, just as one may regard the algebraic structure of a hyperbolic curve over C as
being defined by certain (a priori) analytic modular forms on H, the proof of Theorem
1 proceeds by considering certain p-adic analytic representations of differential forms on
XK . In the p-adic case, however, the domain of definition of these analytic forms (i.e., the
analogue to the upper half-plane) is the spectrum of the p-adic completion of the maximal
tame extension of the function field of XK along various irreducible components of the
special fiber of a stable model X → Spec(OK) of XK (where OK is the ring of integers of
a finite extension K of Qp). It turns out that this object is, just like the upper half-plane,
independent of the moduli of XK .

In fact, various slightly stronger versions of Theorem 1 hold. For instance, instead of
the whole geometric fundamental group π1(XK), it suffices to consider its maximal pro-p
quotient π1(XK)(p). Another strengthening allows one to prove the following result (cf.
Theorem B of [Mzk5]), which generalizes a result of Pop ([Pop]):

Corollary 2. Let p be a prime number. Let K be a subfield of a finitely generated field
extension of Qp. Let L and M be function fields of arbitrary dimension over K. Then the
natural map

HomK(Spec(L),Spec(M)) → Homopen
ΓK

(ΓL,ΓM )

is bijective. Here, Homopen
ΓK

(ΓL,ΓM ) is the set of open, continuous group homomorphisms
ΓL → ΓM over ΓK , considered up to composition with an inner homomorphism arising
from Ker(ΓM → ΓK).

(C.) Comparison with the Case of Abelian Varieties

Note that there is an obvious formal analogy between Theorem 1 above and Tate’s
conjecture on homomorphisms between abelian varieties (cf., e.g., [Falt1]). Indeed, in
discussions of Grothendieck’s anabelian philosophy, it was common to refer to statements
such as that of Theorem 1 as the “anabelian Tate conjecture,” or the “Tate conjecture for
hyperbolic curves.” In fact, however, there is an important difference between Theorem 1
and the “Tate conjecture” of, say, [Falt1]: Namely, the Tate conjecture for abelian varieties
is false over local fields (i.e., finite extensions of Qp). Moreover, until the proof of Theorem
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1, it was generally thought that, just like its abelian cousin, the “anabelian Tate conjecture”
was essentially global in nature. That is to say, it appears that the point of view of the
author, i.e., that Theorem 1 should be regarded as a p-adic version of the “physical aspect”
of the Fuchsian uniformization of a hyperbolic curve, does not exist in the literature (prior
to the work of the author).

§3. The Modular Approach in the p-adic Case

(A.) The Example of Shimura Curves

As discussed in §1, (C.), classical complex Teichmüller theory may be formulated as
the study of the canonical real analytic section s of the Schwarz torsor Sg,r → Mg,r.
Thus, it is natural suppose that the p-adic analogue of classical Teichmüller theory should
revolve around some sort of canonical p-adic section of the Schwarz torsor. Then the
question arises:

How does one define a canonical p-adic section of the Schwarz torsor?

Put another way, for each (or at least most) p-adic hyperbolic curves, we would like to
associate a (or at least a finite, bounded number of) canonical indigenous bundles. Thus,
we would like to know what sort of properties such a “canonical indigenous bundle” should
have.

The model that provides the answer to this question is the theory of Shimura curves.
In fact, the theory of canonical Schwarz structures, canonical differentials, and canonical
coordinates on Shimura curves localized at finite primes has been extensively studied by Y.
Ihara (see, e.g., [Ihara]). In some sense, Ihara’s theory provides the prototype for the “p-adic
Teichmüller theory” of arbitrary hyperbolic curves ([Mzk1-4]) to be discussed in (B.) and
(C.) below. The easiest example of a Shimura curve is M1,0, the moduli stack of elliptic
curves. In this case, the projectivization of the rank two bundle on M1,0 defined by the
first de Rham cohomology module of the universal elliptic curve on M1,0 gives rise (when
equipped with the Gauss-Manin connection) to the canonical indigenous bundle on M1,0.
Moreover, it is well-known that the p-curvature (a canonical invariant of bundles with
connection in positive characteristic which measures the extent to which the connection is
compatible with Frobenius) of this bundle has the following property:

The p-curvature of the canonical indigenous bundle on M1,0 (reduced mod p) is
square nilpotent.

It was this observation that was the key to the development of the theory of [Mzk1-4].

(B.) The Stack of Nilcurves

Let p be an odd prime. Let Ng,r ⊆ (Sg,r)Fp
denote the closed algebraic substack of

indigenous bundles with square nilpotent p-curvature. Then one has the following key
result ([Mzk1], Chapter II, Theorem 2.3):
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Theorem 3. The natural map Ng,r → (Mg,r)Fp
is a finite, flat, local complete in-

tersection morphism of degree p3g−3+r. Thus, up to “isogeny” (i.e., up to the fact that
this degree is not equal to one), Ng,r defines a canonical section of the Schwarz torsor
(Sg,r)Fp

→ (Mg,r)Fp
in characteristic p.

It is this stack Ng,r of nilcurves – i.e., hyperbolic curves in characteristic p equipped with
an indigenous bundle with square nilpotent p-curvature – which is the central object of
study in the theory of [Mzk1-4].

Once one has the above Theorem, next it is natural to ask if one can say more about
the fine structure of Ng,r. Although many interesting and natural questions concerning
the structure of Ng,r remain unsolved at the time of writing, a certain amount can be
understood by analyzing certain substacks, or strata, of Ng,r defined by considering the
loci of nilcurves whose p-curvature vanishes to a certain degree. For instance, nilcurves
whose p-curvature vanishes identically are called dormant. The locus of dormant nilcurves
is denoted Ng,r[∞] ⊆ Ng,r. If a nilcurve is not dormant, then its p-curvature vanishes on
some divisor in the curve. We denote by Ng,r[d] ⊆ Ng,r the locus of nilcurves for which
this divisor is of degree d. The zeroes of the p-curvature are referred to as spikes. Now we
have the following result (cf. Theorems 1.2, 1.6 of the Introduction of [Mzk4]):

Theorem 4. The Ng,r[d] are all smooth over Fp and either empty or of dimension
3g − 3 + r. Moreover, Ng,r[0] is affine.

It turns out that this affineness of Ng,r[0], interpreted properly, gives a new proof of the
connectedness of (Mg,r)Fp

(for p large relative to g). This fact is interesting (relative to
the claim that this theory is a p-adic version of Teichmüller theory) in that one of the
first applications of classical complex Teichmüller theory is to prove the connectedness
of Mg,r. Also, it is interesting to note that F. Oort has succeeded in giving a proof of
the connnectedness of the moduli stack of principally polarized abelian varieties by using
affineness properties of certain natural substacks of this moduli stack in characteristic p.

Despite the fact that the Ng,r[d] are smooth and of the same dimension as Ng,r, we
remark that in most cases Ng,r is not reduced at Ng,r[d]. In fact, roughly speaking, the
larger d is, the less reduced Ng,r is at Ng,r[d]. In order to give sharp quantitative answers
to such questions as:

How reduced is Ng,r at the generic point of Ng,r[d]? Or, what is the generic degree
of Ng,r[d] over (Mg,r)Fp

?

it is necessary to study what happens to a nilcurve as the underlying curve degenerates to
a totally degenerate stable curve (i.e., a stable curve each of whose irreducible components
is P1, with a total of precisely three marked points/nodes). To do this, one must formulate
the theory (using “log structures”) in such a way that it applies to stable curves, as well.

Once one formulates the theory for stable curves, one sees that the answers to the
questions just posed will follow as soon as one:
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(i.) Classifies all molecules – i.e., nilcurves whose underlying curve is a totally
degenerate stable curve.

(ii.) Understands how molecules deform.

The answer to (i.) and (ii.) depends on an extensive analysis of molecules (cf. [Mzk2-4]),
and, although combinatorially quite complicated, is, in some sense, complete. Although
we do not have enough space here to discuss this answer in detail, we pause to remark the
following: It turns out that the answer to (i.) consists of regarding molecules as concatena-
tions of atoms – i.e., toral nilcurves (a slight generalization of nilcurves) whose underlying
curve is P1 with three marked points – and then classifying atoms. The difference be-
tween a toral nilcurve and a (nontoral) nilcurve is that unlike the nontoral case, where the
“radii” at the three marked points are assumed to be zero, in the toral case, one allows
these radii to be arbitrary elements of Fp/{±1} (i.e., the quotient of the set Fp obtained
by identifying λ and −λ for all λ ∈ Fp). Then it turns out that considering the three radii
of an atom defines a natural bijection between the isomorphism classes of atoms and the
set of (ordered) triples of elements of Fp/{±1}.

The reason that we digressed to discuss the theory of atoms is that it is interesting
(relative to the analogy with classical complex Teichmüller theory) in that it is reminiscent
of the fact that a Riemann surface may be analyzed by decomposing it into pants (i.e.,
Riemann surfaces which are topologically isomorphic to P1 − {0, 1,∞}). Moreover, the
isomorphism class of a “pants” is completely determined by the radii of its three holes.

(C.) Canonical Liftings

So far, we have been discussing the characteristic p theory. Ultimately, however, we
would like to know if the various characteristic p objects discussed in (B.) lift canonically
to objects which are flat over Zp. Unfortunately, it seems that it is unlikely that Ng,r

itself lifts canonically to some sort of natural Zp-flat object. If, however, we consider the
open substack – called the ordinary locus – (N ord

g,r )Fp
⊆ Ng,r which is the étale locus of

the morphism Ng,r → (Mg,r)Fp
, then (since the étale site is invariant under nilpotent

thickenings) we get a canonical lifting, i.e., an étale morphism

N ord
g,r → (Mg,r)Zp

of p-adic formal stacks. Over N ord
g,r , one has the sought-after canonical p-adic splitting of

the Schwarz torsor (cf. Theorem 0.1 of the Introduction of [Mzk1]):

Theorem 5. There is a canonical section N ord
g,r → Sg,r of the Schwarz torsor over N ord

g,r

which is the unique section having the following property: There exists a lifting of Frobenius
ΦN : N ord

g,r → N ord
g,r such that the indigenous bundle on the tautological hyperbolic curve

over N ord
g,r defined by the section N ord

g,r → Sg,r is invariant with respect to the Frobenius
action defined by ΦN .

8



Moreover, it turns out that the Frobenius lifting ΦN : N ord
g,r → N ord

g,r (i.e., morphism
whose reduction modulo p is the Frobenius morphism) has the special property that 1

p ·dΦN
induces an isomorphism Φ∗

NΩN ord
g,r

∼= ΩN ord
g,r

. Such a Frobenius lifting is called ordinary. It
turns out that any ordinary Frobenius lifting (i.e., not just ΦN ) defines a set of canonical
multiplicative coordinates in a formal neighborhood of any point α valued in an alge-
braically closed field k of characteristic p, as well as a canonical lifting of α to a point
valued in W (k) (Witt vectors with coefficients in k). Moreover, there is a certain analogy
between this general theory of ordinary Frobenius liftings and the theory of real analytic
Kähler metrics (which also define canonical coordinates). Relative to this analogy, the
canonical Frobenius lifting ΦN on N ord

g,r may be regarded as corresponding to the Weil-
Petersson metric on complex Teichmüller space (a metric whose canonical coordinates are
the coordinates arising from the Bers uniformization of Teichmüller space). Thus, ΦN is,
in a very real sense, a p-adic analogue of the Bers uniformization in the complex case.
Moreover, there is, in fact, a canonical ordinary Frobenius lifting on the “ordinary locus”
of the tautological curve over N ord

g,r whose relative canonical coordinate is analogous to the
canonical coordinate arising from the Köbe uniformization of a hyperbolic curve.

Next, we observe that Serre-Tate theory for ordinary (principally polarized) abelian
varieties may also be formulated as arising from a certain canonical ordinary Frobenius
lifting. Thus, the Serre-Tate parameters (respectively, Serre-Tate canonical lifting) may be
identified with the canonical multiplicative parameters (respectively, canonical lifting to
the Witt vectors) of this Frobenius lifting. That is to say, in a very concrete and rigorous
sense, Theorem 5 may be regarded as the analogue of Serre-Tate theory for hyperbolic
curves. Nevertheless, we remark that it is not the case that the condition that a nilcurve
be ordinary (i.e., defines a point of (N ord

g,r )Fp
⊆ Ng,r) either implies or is implied by the

condition that its Jacobian be ordinary. Although this fact may disappoint some readers,
it is in fact very natural when viewed relative to the general analogy between ordinary
Frobenius liftings and real analytic Kähler metrics discussed above. Indeed, relative to
this analogy, we see that it corresponds to the fact that, when one equips Mg with the
Weil-Petersson metric and Ag (the moduli stack of principally polarized abelian varieties)
with its natural metric arising from the Siegel upper half-plane uniformization, the Torelli
map Mg → Ag is not isometric.

Next, we remark that (N ord
g,r )Fp

⊆ Ng,r[0]. Thus, the other Ng,r[d]’s are left out of
the theory of canonical liftings arising from Theorem 5. Nevertheless, in [Mzk2,4], a more
general theory of canonical liftings is developed that includes arbitrary Ng,r[d]. In this
more general theory, instead of getting local uniformizations by multiplicative canonical
parameters, i.e., uniformizations by ̂Gm, we get uniformizations by more general types
of Lubin-Tate groups, or twisted products of such groups. Roughly speaking, the more
“spikes” in the nilcurves involved – i.e., the larger the d of Ng,r[d] – the more Lubin-Tate
the uniformization becomes.

Finally, we remark that once one develops these theories of canonical liftings, one
also gets accompanying canonical (crystalline) Galois representations of the arithmetic
fundamental group of the tautological curve over N ord

g,r (and its Lubin-Tate generalizations)
into PGL2 of various complicated rings with Galois action. It turns out that these Galois
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representations are the analogues of the canonical representation ρX (of §1, (A.)) – which
was the starting point of our entire discussion.
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